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Decoherence

- quantum information experiments with trapped ions require coherence
times that are much longer than gate operation times

 motional decoherence Is a significant limitation
e large heating rates have been observed in some traps [1,2]

e fluctuating patch potentials on electrode surfaces are thought to be the
cause of large heating rates

Resonance-enhanced photoionisation

« highly efficient: requires greatly reduced atomic flux
 reduces electrode contamination and patch potentials
e also eliminates build-up of charge on insulating surfaces

* has been demonstrated for Ca* ion trap experiments [3-5]

Strontium photoionisation schemes
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Photolonisation setup
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Seguence for precision single ion loading
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o
* cold ion scatters photons efficiently from near resonant beam for easy detection

ohoto = 70 MS and tygee = 30 Ms

 source of atomic flux Is switched off when a single ion is detected
e can extend principle to more than one ion for linear traps

Photolionisation efficiency

e compare trap loading characteristics of electron impact and photoionisation

e estimate an upper limit to the strontium source temperature using readings
from a thermocouple attached to the strontium source

electron impact photoionisation
lonisation
Loading temperature ~350°C (623K) ~200°C (473K)
Sr partial pressure ~10 torr ~10-° torr
Observed loading efficiency ~0.25 ~0.9
(#loads / #attempts)

Isotope selectivity
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e conclude that the atomic flux required for photoionisation loading of Sr is at
least 104 times less than that required for electron impact ionisation

e Isotope abundance: 84 (0.56%), 86 (9.86%), 87 (7.00%), 88 (82.58%)

« should be able to load chosen isotopes by ensuring that power and Doppler-
broadening of the 461 nm transition is minimised

o 87-88 Isotope shift for 461 nm transition is 56 MHz
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